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Abstract

In this paper we introduce the concept of Parallel Cities—live, 3D
simulations of actual cities kept “true to life” using real-time in-
formation from their real-world counterparts. A key enabler of the
concept is the ever-growing tide of SNS (e.g., Twitter) updates, that
can be aggregated and analyzed to obtain a rough, but macroscopi-
cally accurate picture of the current state of a city. Metaphorically,
Parallel Cities will allow users to instantly “open windows” to any
place in the world, providing an attractive enhancement to existing
online mapping services. The paper will offer a concise discussion
of the technical details of the concept, centered around descriptions
of a working prototype that targets the city of Tokyo, Japan.

CR Categories: H.5.1 [Information interfaces and presentation
(e.g., HCI)]: Multimedia Information Systems—Artificial, aug-
mented, and virtual realities
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ing services; urban sensing

1 Introduction

As per Mark Weiser’s predictions [Weiser 1991], our world is now
saturated with myriad types of digital devices, some carried by in-
dividuals (e.g., smartphones) and others embedded within the envi-
ronment (e.g., interactive public displays). Such devices, combined
with the increasingly wide availability of wireless connectivity, can
potentially be appropriated as an army of smart, networked sensor
nodes that continually capture and publish information about cities
and their inhabitants. This prospect of a massive, widely distributed
sensing mechanism has naturally drawn attention in UbiComp/HCI
circles, spawning the neologism “urban sensing” [Cuff et al. 2008].
Although urban sensing has already produced several useful appli-
cations (traffic data overlay on Google Maps is a popular example),
much of the concept’s promise still lies in the future, since informa-
tion that can be obtained via urban sensing is expected to grow—in
both quantity and type—as new digital devices/services continue to
be introduced to the market.

If we adopt a slightly speculative stance, we can extrapolate current
trends and imagine that at some point in the future, the range of data
that can be collected through urban sensing will be such that practi-
cally all information about cities “that are of interest” will be avail-
able to be used in applications. And combining this wealth of urban
data with photorealistic, 3D city simulation (which is already tech-
nically feasible), we will be able to create lifelike, and consistently
up-to-date, simulations of actual cities that could be virtually indis-
tinguishable from live video feeds. In effect, these simulations will
give users a power comparable to being able to instantly open win-
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Figure 1: Parallel Cities prototype.

dows to any place on earth. We call these hypothetical city simula-
tions Parallel Cities.

This paper will provide a succinct description of the concept of Par-
allel Cities. Discussions will center around our implemented proto-
type (Figure 1) targeting central Tokyo, which uses Twitter feeds as
its primary data source—we believe this to be a rational choice, as
the growing usage of SNSs makes them one of the most promising
“urban sensors” in the near- to mid-term future.

2 Parallel Cities

Figure 2 shows the basic technical components that make up a “Par-
allel City”. Visually, the simulation consists of an assortment of 3D
models, that can be categorized into environment and objects. Here,
environment is a large, mostly static model that contains the overall
city landscape including buildings (essentially a 3D map, similar to
Google Earth or Apple’s iOS Maps), whereas objects are models of
humans, vehicles, etc. placed and animated in large numbers on top
of the environment. Both the appearances and behaviors of the 3D
models are continuously adjusted using real-time urban data, which
are collected by dynamically aggregating and analyzing raw input
from a diverse range of urban sensors. For example, lighting effects
on the environment model may be modified according to up-to-date
weather data, and humans can be added to or subtracted from areas
based on real-time cellular network data. The list of potential urban
sensors is virtually endless; for near-future implementations, some
of the most useful sensors would be cellular networks, microblog-
ging/SNS feeds, surveillance camera systems, and wireless sensor
networks. The recent introductions of a new generation of wearable
devices (e.g., Google Glass, Nike+ Fuelband) also present exciting
new opportunities for urban sensing. For example, it might become
common for people to continually publish live video captured using
wearable cameras, or to tag SNS updates with biometric data. Such
information can further improve the fidelity of Parallel Cities.

One critically important aspect of Parallel Cities is that they will be
accurate only at the macroscopic level—microscopic details are not
guaranteed to conform to reality. Environment models will never be
exact down to each cobblestone, and a red Prius that is just about to
enter an intersection in the actual city will most likely not appear in
its Parallel counterpart. What are preserved, instead, are the higher-
level characteristics: the overall city landscape, level of traffic, size/
character of human crowds, etc. As a result certain usage scenarios,
that would be possible if we were actually looking at a live video of
the city, are by design out of reach for Parallel Cities; for example, a
user cannot monitor the movement of an actual friend by looking at
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Figure 2: System components.

the simulated city. However, this is not to say that the truthfulness
of Parallel Cities is static. Technical advances, and introductions of
new urban sensors will increase the fidelity, and some details of the
city that are now considered microscopic (and hence not replicable
in Parallel Cities) may become replicable in the future.

If our goal is to obtain a grasp of the general atmosphere or state of
the city, the lack of microscopic accuracy should not necessarily be
a hindrance. In fact, for many of the minute details of the city, users
should not even be able to discern if they faithfully reflect reality or
not. For example, as long as the higher-level characteristics of the
crowd are maintained, it is impossible to know if each of the human
models in the simulation is an accurate replica of an actual person
living/working there, or was instead simply sampled from a generic
library of 3D human models. Also, studies in urban design [Lynch
1960] show that outside of few select areas where one has the high-
est levels of familiarity, small details in the environment do not fea-
ture in a person’s cognitive understanding of a city. Thus, except in
cases where they knowingly look at their homes, offices, etc., users
may well be blind to minor inaccuracies in Parallel Cities—whether
in humans, traffic or the environment.

3 Related Work

In the past decade, urban sensing [Cuff et al. 2008] has emerged as
a prominent new research topic in the UbiComp/HCI communities,
triggered by the rapid proliferation of mobile devices. While these
works have their roots in prior research on wireless sensor networks
[Akyildiz et al. 2002], urban sensing is characterized by its focus on
citizen participation [Burke et al. 2006], and in its noted reluctance
toward introducing proprietary sensing hardware, instead favoring
clever appropriations of existing (and ideally widespread) devices
such as cell phones [Eagle and Pentland 2006]. Types of informa-
tion that can be collected via urban sensing include locations of hu-
mans [Reades et al. 2007] and vehicles [Leduc 2008], images/sound
[Reddy et al. 2007], air quality [Dutta et al. 2009], etc.

Growing usages of social networking services have sparked a wave
of studies targeting them as sources for data mining. Attempts have
been made to extract data such as latent user profile (e.g., age, race,
political affiliation) [Rao et al. 2010], emotions/sentiments [Kramer
2010], and occurrences of major events [Sasaki et al. 2010]. While
the mining techniques themselves are typically straightforward ad-
aptations of existing methods, the real-time nature and sheer size of
the data set open previously unattainable possibilities.

Perhaps the closest precedent to Parallel Cities is AVE (Augmented
Virtual Environment) [Neumann et al. 2003], where real-time foot-
age from surveillance cameras is seamlessly integrated into 3D en-
vironment models. While AVE systems offer microscopic accuracy,
due to high cost and privacy concerns the idea of installing legions
of surveillance cameras to cover entire cities (and also making their
feeds publicly available) is unrealistic, and thus unlike our approach
is not scalable to city-wide (or world-wide) levels.

4 Prototype

To study the validity of the concept of Parallel Cities, we developed
a preliminary prototype that targets central Tokyo. Compared to our
idea of a true Parallel City system, the prototype is limited in many
aspects—e.g., location, number and types of urban sensors, degree
of photorealism, etc. Our goal in creating the prototype was to real-
ize an implementation that is “just good enough” to perform a gen-
eral evaluation of the potential and feasibility of the concept. Also,
in building the prototype we faced some restrictions (related to bud-
get and lab policy) that forced us to only use publicly available data;
thus some highly useful urban data such as cellular network data are
not incorporated in this prototype. While this takes a toll on fidelity,
our reliance on public data also means that readers can easily follow
our descriptions and build their own versions of the prototype. The
prototype is written in Objective-C, and runs on Mac OS X.

4.1 Environment

Instead of a continuous, large-scale 3D model of the city, our envi-
ronment model consists of multiple small, discrete models—i.e., a
library of photographs shot at different parts of central Tokyo, onto
which 3D models have been mapped manually. This difference has
a major effect on the user experience; unlike in our vision of a true
Parallel City system, where users can navigate through a continuous
simulated world (à la Google Earth), our prototype merely permits
users to switch between a set of disconnected, predetermined areas,
and does not support camera movements outside of simple panning/
zooming operations. The environment is static, aside from weather
(obtained from the Yahoo! Japan website) and lighting changes de-
picted using image filters and OpenGL effects.

4.2 Crowd

Crowds are depicted by placing and animating (according to a sim-
ple algorithm) human models on the environment. As it has proved
difficult for us to obtain free 3D human models that fit naturally into
our context of Tokyo, we instead created our own (admittedly non-
photorealistic) models, as shown in Figure 3. We created eight sets
of models in total; one for each age/gender class used in our Naive
Bayes classifier (described later).

We rely on Twitter analysis to estimate both the sizes and characters
(i.e., age/gender distributions) of human crowds in cities. For crowd
size estimation, cellular network data is known to give more reliable
results with significantly less effort, and thus our technique is meant
as a quick “hack” for cases like ours where such data is unavailable.
On the other hand, we found Twitter analysis to be highly effective
for estimating crowd character.

We attempt to estimate crowd size by looking at the frequency with
which tweets are sent from our area of interest (area name). How-

Figure 3: Human models (subset).



ever, since the practice of geotagging (i.e., attaching GPS locations
to) tweets is not as widespread in Japan as in the US or Europe, we
cannot directly obtain tweets uploaded from a particular area. Thus,
we instead look for tweets that contain area name as keywords; this
straightforward approach works surprisingly well for Tokyo, since
areas are generally called by the names of their nearest train/subway
stations that are densely laid out throughout the city—in effect, cen-
tral Tokyo can be divided into hundreds of tiny areas, each with its
own distinct name. This simple approach may fail in other regions,
however. For example, in New York City it is much more common
for people to use street names (e.g., Mercer St., 3rd Ave., etc.) than
region names (e.g., SoHo, Greenwich Village, etc.) to describe their
whereabouts, which is problematic due to the frequent existence of
identical street names, and their often coarse granularity (Broadway
in New York actually runs more than 30 miles, from lower Manhat-
tan to Sleepy Hollow). Looking for geotagged tweets may prove to
be a better approach in such contexts.

Note that our strategy fails to differentiate between tweets sent from
an area, and tweets about an area. Here, we simply rely on the real-
time nature of Twitter (its principal usage as an outlet of real-time
activity updates [Naaman et al. 2010]) to ensure that the number of
former tweets will be significantly larger than that of the latter.

We assume the crowd size as being roughly proportional to the fre-
quency of tweets—i.e., crowd size can be calculated as c⇤f , where
f denotes the tweet frequency, and c is a region-specific coefficient
whose value differs for each street, each plaza, each block, etc. For
example, the crowd size for a particular street in Harajuku is calcu-
lated by multiplying the c for that street with f for the entire Hara-
juku area. Note that city-wide values of c must somehow be deter-
mined beforehand. While there may be ways to automatically com-
pute them from zoning maps, statistical data, etc., for our prototype
we manually set the values (through trial and error) for each of our
discrete environment models.

To estimate crowd character, we similarly search for tweets recently
sent out from our area of interest (again substituted with tweets that
contain area name as keywords). We then look at each of the users
who had sent out these tweets, and determine both their gender and
approximate age. This process consists of two steps. First, we com-
pare the user name to a list of common Japanese names, to see if it
can be regarded as an unambiguously male or female name. Next,
we query the user’s past tweets from Twitter and break them down
into words, and feed them as input to a Naive Bayes classifier, that
had been trained using timelines of 2574 Twitter users whose ap-
proximate age and gender are both explicitly stated in their profiles.
The classifier determines each user as belonging to one of 8 classes,
as shown in Table 1. (The classes are skewed to the younger side—
Twitter in Japan tends to be more popular among the young, and we
struggled to find enough older users to include in our training set.)
After classification is complete for all users, we can easily calculate
what percentage of users lies in each of the 8 classes; the values are
then adjusted using survey data regarding the ratio of Twitter users
in each age/gender class, to compensate for the demographic differ-
ences between Twitter users and the general population.

4.3 Traffic

Traffic simulation in our prototype is quite straightforward; models
of cars basically follow a simple algorithm of running straight along
a road, and randomly making turns at intersections. Since traffic is
in general orderly (though it can be heavy at times) in central Tokyo,
a modest set of rules can realistically model traffic behavior in most
situations. Numbers of cars on roads are constantly adjusted using
real-time traffic data from Google Maps. To maintain a consistent
aesthetic style, we created our own 3D models for the automobiles,

Age
<= 24 20–34 30–44 >= 40

Female Class 1 Class 2 Class 3 Class 4
Male Class 5 Class 6 Class 7 Class 8

Table 1: Age/gender classes.

in the same way as the human models. Cars displayed in the simula-
tion are randomly chosen from a single library—i.e., the prototype
does not take into account possible regional variations in car styles,
such as color, shape or brand. (It may be possible to infer these from
income statistics or auto-market data in future implementations.) In
addition, the prototype currently does not display any vehicles other
than cars, such as bicycles, motorcycles, trams, etc.

4.4 Special Events

In theory, we can incorporate any type of special events, so long as
they can be detected through analyses of urban data and we prepare
specialized graphical effects to visualize them in the simulation. In
our prototype, we have incorporated the blooming of cherries in the
spring (again detected via Twitter) as a special event. Other events
that may be helpful if simulated include festivals, bazaars, car acci-
dents, queues for restaurants/concert halls, etc. Many of such events
can be monitored (albeit with varying accuracy) through Twitter—
nowadays we can expect any noteworthy event to eventually make
its way into the collective consciousness of tweets.

4.5 Performance

We conducted several tests, to quickly evaluate the performances of
our Twitter analysis techniques.

To test the accuracy of crowd size estimation, we calculated crowd
sizes for eight areas in central Tokyo, at 10-minute intervals for an
entire 24-hour day. We then compared these results with our prior
expectations, derived from general area usage (residential, commer-
cial, etc.) and train/subway station usage statistics. As a result, we
found estimated crowd sizes to be roughly consistent with expecta-
tions for commercial and business districts; for areas known to be
nightlife hubs (such as Shibuya and Roppongi) crowd sizes show a
clear peak in the evening, and for areas known as corporate districts
(such as Shinagawa and Osaki) the values are more stable but with
small peaks in the morning and evening (likely caused by Tweeting
commuters). On the other hand, in residential neighborhoods crowd
sizes barely fluctuate throughout the day—the number of tweets is
evidently too small in these areas to yield reliable results.

We conducted two tests to evaluate the accuracy of crowd character
estimation. In the first test, we assessed the performance of our age/
gender classification method (consisting of user name checking and
Naive Bayes classification), using a set of 150 Twitter users whose
age/gender were both already known. As a result, the system could
classify users into their correct age/gender class 75.3% of the time,
and could determine either the age or gender correctly 98.0% of the
time. While these are good results, remember that since we are only
interested in macroscopic accuracy, what really matters to us is not
classification accuracy per se, but whether our method can correctly
estimate the higher-level demographic properties of an entire group
of users. We thus calculated the mean age & percentage of females
for the entire group of 150 users—the mean age was off only by 1.5
years, and the percentage of females was off only by 2.0%.

In the second test, we calculated macroscopic demographic proper-
ties (mean age & percentage of females) for six areas within central
Tokyo (we took 10 separate measurements throughout a single day,
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Figure 4: Prototype screenshots juxtaposed with photographs.

and averaged the results), and compared them with our prior expec-
tations. While we cannot check the accuracy of the actual numbers
themselves, the results do seem to reflect the general characteristics
of the different areas; for example, there is a clear contrast between
the estimated female ratios in the male-dominated business districts
(Shinagawa and Shinbashi, 21.7% and 24.5% respectively) and the
teenage fashion center of Harajuku (65.6%). Surprisingly, even for
residential neighborhoods such as Shirokanedai or Nezu, the results
match our impressions of these areas quite nicely; this presumably
is because crowd characters generally do not fluctuate as rapidly as
crowd sizes, and hence the small number of tweets in these areas is
less of a handicap compared to estimation of crowd sizes.

Figure 4 shows some screenshots of the prototype, juxtaposed with
photos shot at roughly the same time/place. Ultimately, the question
of whether simulations produced by Parallel Cities seem realistic or
not is a highly subjective one, but to our eyes the prototype already
succeeds reasonably well in reproducing the overall vibe of the dif-
ferent regions of Tokyo—the contrast between drab Shinagawa and
young, colorful Harajuku is eloquently visualized, for example.

5 Conclusion

In this paper we described the concept of Parallel Cities—city sim-
ulations of the future kept “true to life” using real-time urban data.
Users of Parallel Cities can freely open windows to any place in the
world, taking virtual tours to foreign nations, or checking the neigh-
borhood to see if anything interesting is going on. Though our cur-
rent prototype is limited in many aspects, it already conveys general
atmospheres of cities with reasonable success.

One important issue we have failed to discuss is privacy. The exact
types of urban data that would be available for Parallel Cities is con-
tingent on our constantly evolving attitudes towards privacy, which
is hard to predict and also would have regional differences (already
the US and EU have vastly different laws regarding privacy issues).
However, through our prototype we have shown that it is possible to
extract many useful information from Twitter alone—i.e., data that
had been willingly shared by users, not collected surreptitiously or
involuntarily without consent.
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