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ABSTRACT
In this paper we report the results of our early explorations regard-
ing Ninja Codes, a new class of visual codes intended to be used in
a variety of interactive applications including augmented reality,
motion/gesture control, contactless data transfer, robotics, etc. By
harnessing the power of adversarial examples, Ninja Codes can be
rendered discreet, concealed to human eyes but easily recognizable
to detectors based on deep neural networks. The paper will provide
a high-level overview of Ninja Codes, and describe an initial, proof-
of-concept implementation built on top of existing face detection
software. We see this work as a promising step toward a new family
of methods by which digital information can be seamlessly encoded
into real-world objects and environments.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; •Computingmethodologies→Com-
puter vision.
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1 INTRODUCTION
2D visual codes—printable, data-embedded graphical patterns that
can be detected and decoded using computer vision—have become
a common sight throughout the world. The most widely used type
of visual codes is QR codes [1], which were initially devised to aid
logistics but now enjoy longstanding use in an array of industries;
their use has further increased under the ongoing global pandemic,
as a convenient method for contactless data transmission in locales
such as hotels and restaurants. Visual codes also have a long history
of use as fiducial markers that assist localization, i.e., as a means to
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Figure 1: Ninja Codes, visual codes rendered using adversar-
ial example generation that fade into real-world objects and
environments. Here, a “cover image” of awood grain texture
is used to generate code that blends into wooden surfaces.

accurately identify objects’ 6DoF positions within environments.
This has proved useful for a wide range of applications including
augmented reality, gesture/motion control, robotics, etc. Although
marker-less localization is considered a more desirable solution,
achieving robust performance under non-ideal conditions remains
an elusive goal and the need for visual codes persist.

Visual codes tend to have conspicuous appearances, which may
be deemed an advantage in some scenarios as they make the codes
readily perceptible to humans. However, the inflexible aesthetics of
visual codes have also been called out as problematic for some use
cases, triggering developments of more discreet and/or aesthetically
variable codes [22–24]. In general, such techniques entail a tradeoff
between aesthetics and performance: the less “code-like” the codes
appear to humans, the more difficult they are for software to locate
and decode accurately.

We introduce Ninja Codes, a new class of discreet visual codes
whose original appearances are hidden to human eyes using ad-
versarial example generation [10]—a technique borne out of neural
network research that creates images whose contents will be per-
ceived entirely differently by humans and computer vision software.
(For example, an image can be generated that appears to humans as
that of a panda bear, but will be recognized as showing an airplane
by classification networks such as VGG-19 [20].) Ninja Codes apply
this technique to conceal visual codes under arbitrary cover images
provided by users to suit various usage scenarios (Figure 1). The use
of adversarial examples allows codes to be created that naturally
blend into real-world objects and environments, while maintaining
acceptable detection performance.
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This paper will describe our early investigations regarding Ninja
Codes. We will give a general overview of its technical principles,
and present a proof-of-concept implementation built atop existing
open-source face detection software (BlazeFace [4]).

2 RELATEDWORK
2D visual codes were originally introduced more than 30 years ago
in the field of logistics, as a means to allow workers to easily track
and identify packages. Over time, their use gradually expanded to
include various consumer-facing applications such as advertising
and entertainment; this spawned a string of work [22–24] aimed at
creating more aesthetically pleasing visual codes that eschew the
rigid, utilitarian appearances of common codes such as QR codes.
Generally, codes created using such techniques still retain distinctly
“code-like” appearances, and their aesthetic range remains limited
unless major compromises are made in detection performance. The
use of visual codes as fiducial markers goes back to the early 1990s.
Codes designed for this purpose [6, 8, 13] tend to be visually simpler
with fewer details compared to those used in logistics, etc., due to
them prioritizing ease and speed of detection over the amount of
encodable data.

In some applications, images are used in lieu of visual codes (e.g.,
augmented reality apps that use corporate logos as markers). Note
that this is a fundamentally different technical setup, that requires
images to be preregistered in order for them to be detectable. With
visual codes, a single detector can recognize a practically unlimited
variety of new codes created on the fly, with no need for software/
database updates.

Within the past decade, research on deep convolutional networks
have led to considerable advances in computer vision, particularly
image recognition. One interesting property of neural networks is
their susceptibility to adversarial examples [10], i.e., input images
that are strategically designed to induce erroneous responses from
targeted networks. Early techniques such as FGSM (Fast Gradient
Sign Method) produced brittle images whose adversarial properties
vanished even with slight modifications such as rotation or scaling.
However, with the introductions of newer techniques such as EOT
(Expectation Over Transformation) [2] and attacks that target object
detectors (e.g., YOLO [17], SSD [15]) in addition to simple classifiers,
it has now become possible to create reasonably robust adversarial
examples that stay effective even after being subject to substantial
perturbations [7, 21].

Ninja Codes use adversarial examples to hide information under
arbitrary cover images. The use of adversarial examples to conceal
information to human eyes has precedents in steganography re-
search [3, 25]. However, such efforts do not target object detectors,
and also operate strictly within the digital realm; in contrast, Ninja
Codes are intended to be printed on physical media such as paper,
and captured by cameras from various angles and distances under
a range of environmental conditions. This leads to different sets of
technical requirements.

3 NINJA CODES
Before Ninja Codes can be created, as prerequisites we first need a
scheme of 2D visual codes (code scheme), and also a corresponding
neural network trained to detect codes that adhere to said scheme

(detector). The detector should take an image (which may or may
not contain visual codes) as input, and output a tensor containing
both the locations of detected codes (if any) and data encoded in
each of them.

One way to satisfy these requirements is to start with an existing
code design (e.g., QR codes), prepare a dataset of annotated images
(in which the codes appear in various sizes/positions/orientations
under a range of environmental conditions), and use the dataset to
train an object detector network. Or alternatively, a custom code
scheme may be newly developed. In any case, the performance of
the code scheme / detector network combination will serve as the
upper limit of the detection performance of Ninja Codes.

Once we have a functioning combination of a code scheme and
a detector, we can move on to actually creating Ninja Codes. The
user supplies two images: 1) a code image (𝑥𝑐𝑜𝑑𝑒 ), i.e., an image of
the visual code (adhering to the chosen code scheme) that encodes
user-defined binary data, and 2) a cover image (𝑥𝑐𝑜𝑣𝑒𝑟 ) that specifies
what the resulting Ninja Code should look like to the human eye
(e.g., a wood grain texture may be used if we wish to create a Ninja
Code that naturally blends into surfaces of wooden furniture.) An
iterative optimization process then generates an adversarial exam-
ple (𝑥 ), that appears as close as possible to 𝑥𝑐𝑜𝑣𝑒𝑟 (to humans) while
triggering responses from the detector similar to those triggered
by 𝑥𝑐𝑜𝑑𝑒 . (In other words, the detector network is unable to distin-
guish between 𝑥 and 𝑥𝑐𝑜𝑑𝑒 .) Using Lagrangian relaxation [5], this
optimization problem can be formalized as follows:

argmin
𝑥

E𝑡∼𝑇
𝑛∑

𝑘=0
𝜆𝑘L𝑘 (1)

Here, 𝑇 is a distribution of differentiable image transformation
functions 𝑡 , chosen to simulate both the range of angles/distances
from which Ninja Codes will be captured in real-life scenarios, and
possible variations in environmental lighting, camera/lens, printing
material, etc. (Generated Ninja Codes will typically be undetectable
under conditions not anticipated in 𝑇 .) Scalars 𝜆0, 𝜆1, . . . , 𝜆𝑛 are
empirically chosen weights for loss terms L0,L1, . . . ,L𝑛 , which
are defined as follows:

• L0: The distance between adversarial example 𝑥 and cover
image 𝑥𝑐𝑜𝑣𝑒𝑟 , both transformed using 𝑡

• L1: The distance between the respective responses of the
detector to adversarial example 𝑥 and code image 𝑥𝑐𝑜𝑑𝑒 , both
transformed using 𝑡

• L2,L3, . . . ,L𝑛 : Other losses necessitated by the specifics of
the code scheme and/or the application domain, e.g., non-
printability score [19]

A judicious choice of distribution 𝑇 that aptly reflects intended
usage scenarios should make 𝑥 robust to perturbations, resulting
in Ninja Codes that can reliably be detected even when printed on
a multitude of materials and captured under varying conditions.
Although adversarial examples are known to transfer reasonably
well [16], for best performance the same detector network used to
generate Ninja Codes should also be used to recognize them. Note
that the above is a high-level description of Ninja Codes and there
exists considerable latitude with regards to implementation details,



Ninja Codes: Exploring Neural Generation of Discreet Visual Codes CHI ’21 Extended Abstracts, May 8–13, 2021, Yokohama, Japan

F

New
Code

External
Box

Face
Image

Examples

A
B

C

E

D

F
G

H

Figure 2: Code scheme for our proof-of-concept implementation. The relative orientation of the face to the solid-colored box
is used to encode 3 bits of information.

such as code scheme, detector architecture, optimization algorithm,
loss term definitions, weight values, etc.

4 PROOF-OF-CONCEPT IMPLEMENTATION
As a proof-of-concept of Ninja Codes, we present a simple imple-
mentation built using BlazeFace [4], a multi-platform, open-source
face detection software based on theMobileNet architecture [11, 18].
Here we use its iOS implementation, whose frame rate is reported
to exceed 1000fps on an off-the-shelf smartphone (Apple iPhone
XS). The BlazeFace network takes 256×256px images as input, and
outputs tensors containing information about the locations of de-
tected faces, each accompanied by a confidence score and also a set
of six keypoints corresponding to positions of facial features (eyes,
ears, nose, mouth).

4.1 Code Scheme
Figure 2 illustrates the code scheme we use in our proof-of-concept
implementation. Instead of a black-and-white matrix design com-
monly seen in visual codes, here we use a specialized scheme where
each code takes the form of a solid-colored box containing a single
image of a person’s face. Information is encoded using the face’s
orientation in relation to the external box. This simple code scheme
allows us to quickly implement Ninja Codes without going through
the process of preparing an annotated dataset and training a detec-
tor network ourselves.

The code scheme comes with obvious downsides, the largest of
which is that it can only encode small bits of information (3 bits in
our implementation). In theory, the size of encodable data can be
increased to moderate extents by detecting more minute differences
in face orientations, taking into account face size/position, identify-
ing facial features, including multiple faces inside the box, etc. Such
enhancements are outside the scope of this paper, however, as our
goal here is to demonstrate a quick-and-dirty implementation of the
overall concept. Another downside is the need for the external box,
which makes the codes less discreet compared to true Ninja Codes.
(The box is used as an anchor to determine the relative orientation
of the contained face image, and also to differentiate the codes from
actual human faces which may exist in the scene.) The box is drawn
in either solid white or black, and is marked in one corner to make
its orientation discernible; for each face detected by BlazeFace, a

Detect Face Find Box Decode Data

Figure 3: For each detected face, a CPU-based process checks
whether it is surrounded by an external, solid-colored box. If
a box is found, the relative orientation of the face to the box
is evaluated to extract encoded information. Ninja Codes are
detected/decoded in the exact same manner.

lightweight CPU-based process checks for the existence of the box
and reads out encoded data if one has been found (Figure 3).

Creating a new code in this scheme is a straightforward process
of rotating/cropping an arbitrary image containing a person’s face,
and embedding it within a solid-colored box. BlazeFace can detect
faces in both color and grayscale images, and in our experiments
worked reasonably well with realistically-drawn illustrations and
cartoons in addition to photographs. One caveat is that BlazeFace
works best for faces that are more or less upright; in order to detect
non-upright (e.g., upside-down) faces, our detection software passes
a single video frame to BlazeFace 4 consecutive times, each time
rotating the entire frame 90 degrees.

The face-based code scheme was devised as a stopgap solution to
assist us in our proof-of-concept implementation. Needless to say,
for best performance preparing a custom code scheme along with
a specifically-trained detector network would be desirable, whose
development comprises a central component of our future work.
However, there may exist scenarios (e.g., quick prototyping) where
the ability to effectively piggyback on proven face detection soft-
ware with highly-optimized performance becomes advantageous;
as face detection is an in-demand, fast developing field of technol-
ogy, we can expect continuous advances to be made that can be
further exploited by this code scheme.

4.2 Adversarial Example Generation
Codes created through the above process are not yet discreet; they
are turned inconspicuous by replacing the contained face images



CHI ’21 Extended Abstracts, May 8–13, 2021, Yokohama, Japan Takeuchi

0f 1f 2f

OUTIN

Feature Maps

Figure 4: Intermediate feature maps of a detector network.
In generating adversarial examples, instead of minimizing
the distance between the detector’s final outputs, we attempt
to minimize the sum of distances for a select set of interme-
diate outputs.

with corresponding adversarial examples. Our method for generat-
ing adversarial examples mostly mirrors conventional techniques,
but entails slight modifications inspired by work on neural style
transfer [9, 12].

A key intuition of neural style transfer is that responses of in-
termediate layers of neural networks (feature maps, Figure 4) hold
interesting information that can be put to use in image generation
tasks. For example, given two images—a photograph of a person’s
face and Van Gogh’s Starry Night—a new image showing the per-
son’s face redrawn in Van Gogh’s style can be synthesized, through
computations involving the intermediate responses of image classi-
fier networks such as VGG-19. In other words, the style and content
of arbitrary images can be isolated by giving them as input to neural
networks and studying their intermediate feature maps. Applying
this intuition to our problem at hand, we generate adversarial ex-
amples by defining L1 as follows:

L1 =
∑
𝑙 ∈𝐿

∑
𝑖

[𝑓 𝑖
𝑙
(𝑡 (𝑥)) − 𝑓 𝑖

𝑙
(𝑡 (𝑥𝑐𝑜𝑑𝑒 ))]2 (2)

Here, 𝑥𝑐𝑜𝑑𝑒 is the code image, which in our case is an image con-
taining a human face (cropped/resized to 256×256px) and rotated so
that the face sits upright and is positioned roughly in the center of
the image. 𝑓 𝑖

𝑙
refers to the 𝑖th element of the detector’s (BlazeFace’s)

intermediate output (feature map) at layer 𝑙 . 𝐿 denotes the set of
intermediate layers whose outputs will be taken into account in
calculating L1; in our implementation, we use the outputs from
the last five BlazeBlocks (i.e., modules containing multiple convo-
lutional layers and pooling/padding operations) of the BlazeFace
network. Intuitively, our choice to define L1 in this way—as op-
posed to a more standard definition that takes the distance between
the network’s final outputs—can be understood as attempting to
create more robust adversarial examples at the risk of introducing
some level of face-like features in the output. (Although we have
yet to conduct formal evaluations, our informal observations so far
strongly support our case for higher robustness.) Redefinitions of
set 𝐿 can be used as a fine-tuning mechanism; including lower, i.e.,
earlier layers of the network in 𝐿 will likely lead to better detection
performance, albeit also making the final image look increasingly
face-like to human eyes.

Regarding the other loss terms, L0 is defined straightforwardly
as the mean squared error between 𝑡 (𝑥) and 𝑡 (𝑥𝑐𝑜𝑣𝑒𝑟 ), i.e., images
𝑥 and 𝑥𝑐𝑜𝑣𝑒𝑟 both transformed using 𝑡 . For L2, we introduce a color
divergence score derived by first calculating 𝑥 − 𝑥𝑐𝑜𝑣𝑒𝑟 (perturbation
image), and then adding up the RGB variances of all pixels within
this image. (In the equation below, 𝑥𝑖 and 𝑥𝑖𝑐𝑜𝑣𝑒𝑟 refers to the 𝑖th
pixel of images 𝑥 and 𝑥𝑐𝑜𝑣𝑒𝑟 , respectively.) Note that we do not
apply 𝑡 to images when calculating the color divergence score; this
simplifies computation, and in our experience does not result in
any visible drop in visual quality or detection performance.

L2 =
∑
𝑖

Var(𝑥𝑖 − 𝑥𝑖𝑐𝑜𝑣𝑒𝑟 ) (3)

In effect, by introducing the above color divergence score, we are
attempting to minimize the introduction of unwanted colors in the
final image by trying to keep perturbations close to grayscale values;
this helps counter patches of skin-like colors emerging within 𝑥 .
Although Ninja Codes are primarily intended to be printed on paper
and other physical media, to reduce computational cost we opted
not to use the non-printability score described in [19].

For 𝑇 we use a randomized collection of differentiable transfor-
mation functions, i.e., rotation, scaling, perspective transformation,
noise addition, and contrast/brightness adjustment. A broader distri-
bution of𝑇 will expand the range of conditions (e.g., angle, distance,
lighting) under which Ninja Codes can be detected, at the risk of
introducing more face-like features. Weights 𝜆0, 𝜆1, 𝜆2 are adjusted
independently for each image; as a rule of thumb, we begin with
𝜆0 = 1000, 𝜆1 = 10, 𝜆2 = 0.1, and iteratively increase/decrease 𝜆0
until we achieve satisfactory results. Optimization is performed via
stochastic gradient descent using Adam [14] on PyTorch (learning
rate starts at 0.1, and is set to progressively decrease). Generating a
single adversarial example takes approximately 18 minutes on our
2020 Macbook Pro (Intel Core i9, CPU only). Once the algorithm
converges, the final Ninja Code can be created by cropping/rotating
the output image in accordance to the 3-bit data we wish to encode,
and enclosing it within a solid-colored external box.

Figure 5 shows several examples of generated Ninja Codes. We
found the codes to be reliably recognizable and decodable using a
BlazeFace-based detection software running on iPhone 12 Pro. The
codes successfully mimic the general visual characteristics of the
user-selected cover images. However, upon close inspection some
face-like features introduced during the optimization process are
visible. Such features can be quite prominent for cover images with
relatively uniform textures.

5 DISCUSSION
Our proof-of-concept implementation suffers from several obvious
limitations; the most detrimental of which is the minuscule size of
encodable data. We plan to conduct a fully-fledged implementation
with increased data capacity as part of future work, but there may
exist select usage scenarios where the current capacity is already
acceptable, e.g., some gesture control applications where one needs
to only detect and differentiate between a handful of codes.

Exactly to what extent we can increase the data capacity through
future implementations is unknown, but we believe it reasonable
to assume that a capacity of several bytes (enough to encode short
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Figure 5: Examples of generated Ninja Codes. Photos of the author were used to create code images (not shown here).

strings but not complete URLs) is easily within reach, which should
broaden the range of potential applications. Although there may be
little reason to choose Ninja Codes over existing codes in laboratory
settings (or other settings where aesthetics are of little concern), the
use of interactive technologies have now expanded to include many
situations where eschewing distinctly “code-like” appearances will
be desirable—for example, artists incorporating motion tracking
into their performances or installations may desire codes that do not
clash with their works’ aesthetic styles, and researchers engaging in
ethnographic HCI research may sometimes wish to conceal obvious
signs of technological intervention.

Presently, visual codes enjoy a broader range of use cases in East
Asia (particularly China) compared to the rest of the world. As such,
the various ways in which codes are used in the region may offer us
insights about potential future uses of Ninja Codes. For example, in
Chinese cities it is not uncommon to see billboard-sized QR codes
pinned to building walls, effectively overlaying streetscapes with
digital information. Ninja Codes may similarly be deployed at large
scales, to provide additional information and/or entertainment to
passersby but in a more discreet manner.

An interesting fact regarding most existing visual codes is that
they are detected using CPU-based, handcrafted algorithms. Since
Ninja Codes are detected using neural network inference on GPUs,
with sufficient optimization we should be able to expect superior

frame rates, particularly on mobile and embedded devices that lack
powerful CPUs.

Prior work have shown that the notion of adversarial examples
can be extended to 3D [2], i.e., we can generate objects (and fabricate
them using 3D printers, CNC mills, etc.) that will be recognized as
arbitrary entities by neural networks. Applying such techniques to
Ninja Codes, we may be able to create a varied range of sculptures,
furniture, artificial flowers, and other environmental elements that
seem entirely ordinary to human eyes but are encoded with hidden
information that can be deciphered by neural networks.

6 CONCLUSION
This paper introduced Ninja Codes, a new class of visual codes that
can be made inconspicuous through the use of adversarial examples.
We described the general concept, and presented a proof-of-concept
implementation built atop existing face detection software. Future
work will center around preparing a custom combination of code
scheme and detector network; we also plan to explore the concept’s
applicability to 3D. Though advances in deep learning has brought
sizable leaps in computer vision, marker-less localization is still an
unsolved problem and visual codes remain an important technology
in a wide array of domains. We believe Ninja Codes can help make
visual codes a more pervasive part of our everyday lives, enabling
numerous novel applications but in ways compatible with people’s
aesthetic sensibilities.
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